

The Inferno Adventures

Inspecting the Inferno Operating
System

By Marvin Johanning

Text: c© Copyright 2020 Marvin Johanning
Cover design: c© Copyright 2020 Marvin Johanning

Copyright (C) 2020 Marvin Johanning.
c© 2020 by Marvin Johanning
“The Inferno Adventures: Inspecting the Inferno Operating
System” by Marvin Johanning is licensed under CC BY-NC-
SA 4.0. To view a copy of this license, visit https://creativecom
mons.org/licenses/by-nc-sa/4.0.

Inferno R© and Limbo R© are registered trademarks of Vita
Nuova Holdings Limited in the USA and other countries, and
in the European Union.
Inferno OSTM is a trademark of Vita Nuova Holdings Limited
in the USA and other countries, and in the European Union.
Dis R© is a registered trademark of Vita Nuova Holdings Lim-
ited in the United Kingdom, the USA and other countries.

Publishing:
Marvin Johanning
Salzufler Str. 66
33719 Bielefeld
info@marvinjohanning.de

Printing: epubli – ein Service der neopubli GmbH, Berlin

We have persistent objects,
they’re called files.

KEN THOMPSON

The Inferno Adventures

Contents

Introduction i

About me iii

Book I 2

From the Deepest Depths of Hell 3

Resurrecting the Devil 7

Book II 16

Commencing the Descent 17

Combing through Hell’s Inventory 22
Files . 23
Charon . 26
Edit . 27

Contents

Acme . 28
Tetris and Bounce 34
Utilities . 35

Book III 38

Adrift in Limbo 39

Deliverance from Limbo 44

Mathematical Inquiries 53

Say, what is thy name? 60

In Perpetuum 65

Appendix 71

Addendum 72

Further Reading 73

Introduction i

Introduction

In the following book you will be presented with some in-
formation regarding the Inferno operating system created
by Bell Labs in the mid 1990s. Its name and somewhat
mysterious aura led me to write it in a style akin to the one
that can be seen in older books, such as those from the early
20th or late 19th centuries. This applies to both the chapter
headings, as well as the text itself.

Furthermore, a rudimentary study of the Limbo program-
ming language is also included, wherein I attempt to explain
its basics in an manner which I hope will be easy to under-
stand even if you do not have a lot of programming experience.

I believe that this may also make reading it somewhat
more enjoyable than the otherwise rather dryly written litera-
ture available on this subject and perhaps help those who are
interested in this operating system — and that may possibly
not know much about Linux itself either — can have an
interestingly written introduction.

It is however to be noted that this is not meant to be
a complete introduction to the operating system and its

ii The Inferno Adventures

underlying structure; it is merely intended to be a quick
overview of the operating system, how to install it and what
you can do with it.

Additionally, should you want further information regard-
ing this operating system, I do promote the reading of the
Addendum, wherein you will find supplementary information
I found unfit for the main portion of this work or which I
became aware of only after having finished the main work.
In addition to that, the Further Reading section will provide
you with a list of texts which can be used to delve deeper
into this interesting topic.

I highly encourage to to criticise my work — this is,
obviously, without having to result to petty insults and the
like — and send me an email with your feedback. It is not
unlikely that I have made a mistake — or perhaps even several
— over the course of this document and I always like to be
corrected if there are factual, grammatical or spelling errors.

This work is licensed under a Creative Commons license,
which means you are allowed to share it with others free of
charge and I do encourage you to do so; you should never have
to pay for this document in a digital format and I would like
you to report any such occurrences to me, since commercial
distribution is strictly prohibited by the license and those
who make a profit from it are in violation of it. Physical
copies can be obtained solely from me, at least commercially.

About me iii

About me

My name is Marvin Johanning, I’m twenty-one years old and
currently reside in a city many deem to not exist — which,
obviously, is untrue for I do live here and surely I am real.
I like writing things, even though, perhaps, I am not great
at it; yet I enjoy doing so and only through practice can
you improve, which is why I write as much as possible as
frequently as I can.

I have recently switched from writing in LibreOffice to
LATEX, as LibreOffice has proven itself to be headache-inducing
when working with large amounts of text which you wish to
reformat at a later date.

I tend to write about things relating to languages — be
it real or programming languages —, computers and, though
rarely, politics. All of these can be found on my website. My
biggest writing project to-date is The Intricacies of Ancient
Egyptian Hieroglyphics (ISBN: 978-3-752952-49-0), which
incidentally was what lead me to use LATEX, information
regarding which can, too, be found on my website.

Book I

From the Deepest Depths of Hell 3

From the Deepest
Depths of Hell

“Long is the way and
hard, that out of Hell
leads up to light.”

John Milton
Paradise Lost, Book II

I must admit, it was largely the rather intriguing name of
this operating system that made me want to know more about
it and conduct more research on it. I had come across it on
one of my quite common internet trips wherein I simply hop
from one hyperlink to the next, trying to discover something
interesting — or, perhaps more accurately, something obscure.
Frequently these trips end unsatisfactorily; yet this time, luck
seems to have been on my side, for I was finally able to
uncover something interesting — why, even mysterious. I am
of course speaking of the Inferno operating system created
by the renowned Bell Labs in 1996.

4 The Inferno Adventures

They had previously worked on Plan 9 from Bell Labs —
why they felt the need to add the “from Bell Labs” portion
is, unfortunately, beyond me — which, just as Inferno, has
largely fallen into obscurity. It is now just to be found in the
dark and long forgotten and abandoned corners of the web
that seem to be frozen in time, containing information and
discussions from days long past; that are held aloft simply by
someone continuing to pay for server bills. It’s a pity, really,
how large amounts of information can simply vanish from
the world by someone — perhaps quite literally — pulling
the plug.

Plan 9 — as I will be calling it henceforth, ignoring the
from Bell Labs portion of its name, for I trust you will know
that I am indeed referring to the operating system and not
the film — was actually what I had found prior to Inferno.

I am unsure of the precise circumstances that let me
to its discovery, but I distinctly remember discovering a
page filled with interesting documents on a wide range of
topics, which can be reached under the following address:
http://doc.cat-v.org/. This fascinating archive of old
documents contains a myriad of interesting titbits on both
Plan 9 and Inferno — and other topics as well.

I thus decided to start reading some of the documents
available on Plan 9 and was quickly intrigued — for seeing
an operating system whose creators are the same ones that
created the beauty that is UNIX was truly remarkable; why
had I not heard of it previously?

Yet to my utter dismay, it was quickly revealed that it
seems to have been long forgotten and abandoned — but a

From the Deepest Depths of Hell 5

mere relic of the past — and that one can count its user base
on two hands; and while there appears to remain a small
number of people that continue using it, its ultimate failure
was being unable to prove much better than what it strove
to replace — UNIX itself.

For they realised their old operating system had become
too old, even by the standards of the mid-1980s. They wished
to create a system — from scratch — that would encompass
these newfangled ideas, such as graphical user interfaces; a
system that did not have these features haphazardly stitched
on — as a surgeon would try to fix a severely wounded fellow
— but one that was built with them in mind; a system that
would abide by UNIX’ philosophy of everything being a file,
but one that was more adapt to modern — at least, for the
time — standards.

But alas, as the passage of time has revealed, their efforts
have been in vain; for ask any fellow, even those who are
learned and know of computers, and chances are high he will
not know of their failed efforts to create a superior UNIX.

Yet this is not a tale of Plan 9, it is one of its successor
Inferno. Having learnt from their former mistakes with Plan
9, they strove to create a superior Plan 9; one that would
be used in network environments; one that was portable and
lightweight and could easily run on a myriad of different types
of machine. Yet tragically, even Inferno seems to have gone
under — perhaps even into hell itself.

But fret not! While abandoned by Bell Labs long ago —
what vile traitors they are! —, it has since been acquired by a
British company, who have released the latest version in 2015,

6 The Inferno Adventures

known as Vita Nuova; an Italian word, whose meaning is
new life. They, too, appear to have obtained the inspiration
for their name from one of Dante’s most magnificent works
and seem to be those whom exclusive rights to the Inferno
operating system have been granted — and, most surprisingly,
they appear to aid in the development of Bell Lab’s former
OS, Plan 9, and are providing their services regarding the
printing of Plan 9 manuals.

I believe, though, that the time has come to unveil this
long forgotten gem.

Resurrecting the Devil 7

Resurrecting the Devil

“Soon you will be where
your own eyes will see the
source and cause and give
you their own answer to
the mystery.”

Dante Alighieri
The Divine Comedy,

Inferno

The first question that arises is whence one can obtain
a copy of this operating system and it seems the official
source code is currently available on GitBucket; but one
may also download it from the current maintainers’ website:
http://www.vitanuova.com/index.html. The appearance of
this website, too, reminds one of those long forgotten sites
filled with flashing GIFs and strangely formatted text from
the late 1990s or early 2000s. Yet it appears that it has yet to
be abandoned — why, there seem to exist discussion forums
dedicated to Inferno still! What a site to behold they are;

8 The Inferno Adventures

and though posted on only occasionally, it is a pleasure to
see discussions being conducted about Inferno — there may
be hope still! But let us continue on our bottomward journey
leading us into the depths of hell.

Obtaining the latest version of this operating system is
a task swiftly completely; indeed, it is a mere 70 megabyte
large archive — ’tis truly devilish sorcery worthy of the name
“Inferno”.

Yet already we stumble across something strange; some-
thing unusual; something you may not see on an operating
system of current times —, for why are there different down-
loads for different operating systems? Surely, you cannot
imply it is to be run on top of another operating system?
Why yes, you can.

Indeed, something I had neglected to mention previously
was the fact Inferno is no ordinary operating system — no,
it is meant to be installed on top of the one already running
on one’s machine; and whilst it is indeed possible to install it
onto bare hardware, only a madman would do such a thing.
Really, its main intent was to be a complementary system to
Plan 9 and one was meant to install it on top of Plan 9 to
have a more complete experience.

Thus choose wisely; do not download the wrong archive,
for it may not work. As I am running Linux, I chose their
archive meant to be used with Unix-like systems, of which
Linux is one. It is, as previously mentioned, an archive and
must thus be extracted, a task easily accomplished with Linux’
helpful tar command; one must simply type tar xf followed
by the name of the archive and it is extracted into its own

Resurrecting the Devil 9

directory.
Upon entering the directory so thoughtfully created by the

tar command, one is greeted by files upon files and folders
upon folders. Indeed, it may be slightly disorienting — even
off-putting — to those uninitiated to Unix-like systems; but,
as one is swift to notice, there are two helpful documents
to guide us in our installation journey: a README.md and an
INSTALL document. Therein you will find a lot of information
imperative in performing in our task of installing Inferno;
thus, let us first take a look at the README.

Inside the README one finds general information regard-
ing the operating system, detailing its creators and purpose.
Additionally, it highlights what makes it so interesting — yet
also similar to Unix: —

The use of a high-level language and virtual ma-
chine is sensible but mundane. The interesting
thing is the system’s representation of services
and resources. They are represented in a file-like
name hierarchy. Programs access them using only
the file operations open, read/write, and close.
The ‘files’ may of course represent stored data,
but may also be devices, network and protocol
interfaces, dynamic data sources, and services.

It is truly remarkable; a system whereon everything is
a file — something that can readily be read and edited —
is revolutionary and yet it is simple — why, even mundane!
A mere child could think of it. It is, beyond any doubt, an
elegant and ingenious idea.

10 The Inferno Adventures

But withal, this helped but little in embarking onto our
journey into Inferno; and whilst it was indeed interesting to
be given some information regarding its background, we are
none the wiser. Thus, let us read the INSTALL file, wherein
we shall — hopefully — find our answers; and indeed we do!
For therein we are presented with actual instructions, but
as they may appear cryptic to those who have never — or
perhaps only rarely — used a Unix-based operating system,
I shall try to elaborate on their instructions; for they merely
appear cryptic — or, perchance, even challenging — and are,
in actuality, quaint and mundane.

It is, however, to be noted that my instructions henceforth
will work only on Linux x86; should you wish to be presented
with instructions regarding other systems — systems whose
name should not be spoken, for they are vicious and vile,
forged somewhere far below hell itself; in a place Beëlzebub
himself does not dare to enter — you may cease your reading
here, for you may not find the information you desire. The
following chapter is akin to a recipe from a cook book; hence
follow the instructions with care, or your “meal” may turn
out wretched, ugly and inedible.

One must first define the root of the installation; this
may sound somewhat strange, yet in actuality one is simply
required to aid Inferno in knowing where on your system it
is located — it cannot know on its own and assumes it is
located in /usr/local/inferno. Hence, should you not wish
Inferno to be installed there, you must alter the mkconfig
file; therein you can modify the ROOT variable to point to your
Inferno directory. Yet withal, I would recommend simply

Resurrecting the Devil 11

using the directory Inferno wishes to be inside of by creating
it using sudo mkdir /usr/local/inferno and thereafter
copying the contents from the old directory to the new one by
typing sudo cp -r * /usr/local/inferno; I have found
this to be much more simple. You must then move into this
directory by typing cd /usr/local/inferno.

But be aware! Apart from the ROOT variable, there exist
two others, namely SYSHOST and OBJTYPE; it is crucial to
modify these so that they match your system, for otherwise
your installation will fail — indeed, this is akin to letting
a scoundrel wreak havoc on your system. Thus — this is,
unless you are using one of the aforementioned systems whose
names should never be mentioned, for they cause terror and
fear far greater than that caused by the devil himself —,
pay heed to the values of these two variables, for they ought
to be set to Linux and 386 respectively. The latter should
be modified to equal arm should your Linux installation be
ARM-based, such as those running on the Raspberry Pi.

Having completed this task, you will thence be able to
execute makemk.sh, a shell script that will spawn hither the
mk executable which shall thenceforth be used for building
Inferno itself; a infernal tool for certain, yet one that shall
prove invaluable.

I implore you to act with as much care as you can per-
mit henceforth, for the following commands utilise sudo; an
almighty tool whose purpose is to allow you to be the lord
of your system; a tool that grants you the permissions to
do every conceivable thing on your machine; a tool that is
a juxtaposition of both Good and Evil, for it imparts you

12 The Inferno Adventures

with the power of achieving your every desire, but it may
also destroy what you have created in an instant. Should
your machine contain data you believe invaluable, I urge you
create a copy of it elsewhere; in a place where Satan cannot
touch it.

Notwithstanding, it must be used, for our machine will
not permit us to make changes without it; you may attempt
to run makemk.sh without sudo, but you shall be given an
error, as one may not make any changes to the system without
having been having been granted the appropriate privileges.

If you deem yourself to be prepared, execute sudo ./make
mk.sh whereupon you may be presented with a number of
warnings that can, however, be ignored; for if, after a few
seconds, you are told that “mk binary built successfully!”, ev-
erything has worked and a binary has been concocted and can
thence be found inside /usr/local/inferno/Linux/386/bin.

But alas, our machine is dim-witted, for running mk does
not yield anything; nay, it appears the command does not
exist — which is undoubtedly wrong, for its existence can be
ascertained by looking at the aforementioned directory. So
what is one to do? The machine needs to be told where to
find it — and the binaries that shall be brought into existence
soon —, which means that we will need to modify the PATH
variable.

The contents of this variable tell our machine where bi-
naries are located and one must thus affix the path to our
previously created binary onto the PATH variable, a task
swiftly accomplished; but first it is imperative to know what
Shell is currently being used. This is achieved by typing

Resurrecting the Devil 13

echo $SHELL into one’s terminal, which, in my case, yields
/usr/bin/zsh, for I use Zsh; on your system, a likely candi-
date will be /usr/bin/bash, since the Bourne Shell, as it is
called, is one of the most prominent ones in use today.

Nevertheless, one needs to add the following line to one’s
/.bashrc or /.zshrc whose purpose it is to inform the ma-
chine of our newly built binary’s location, so that by typing its
name it will be executed: export PATH="/usr/local/bin/
inferno/Linux/386/bin:$PATH".

Should you have neglected to heed my previous warnings
regarding the usage of a different operating system, you must
change the path accordingly; though I do trust you did no
such thing.

Furthermore, the adding of this line to one’s /.profile
file is also recommended, though not a strict requirement.

Upon the completion of this task, please restart your
terminal, for this causes it to renew its settings and take
those into account you have just added; typing mk –help
should return some information regarding the command’s
usage.

Yet you may wonder — why, even be bothered —, for
what has all this effort lead to? How has this file aided us in
our journey towards Inferno? Fret not, for this file is but the
beginning — why, it is akin to the apple that those whom
God created first, Adam and Eve, had fallen for; the apple
that initiated their fall from Eden; and just as they were cast
from Eden, we, too, shall be cast from our current operating
system and into Inferno. We, too, have sinned — albeit
knowingly — to continue our descent into Inferno; mk is our

14 The Inferno Adventures

apple, our forbidden fruit, wherewith we shall enter hell.
Having gained access to such a powerful tool, we must re-

turn to our Inferno installation in /usr/local/inferno and,
upon having arrived, we must commence with the creation
of the system itself.

The first command that must be run is sudo mk nuke
— just a reminder of what is to come; for if we must nuke
something, this surely cannot be a system of good. Running
this command will erase files which are not necessary for us;
thereupon we may begin the actual installation.

Finally, the time has come for us to install Inferno; the
final command that will push open the gates that shall unveil
the long-forgotten mystery of Inferno — sudo mk install;
but first, you must wait, for this may take some time, de-
pending on how powerful of machine you own.

Book II

Commencing the Descent 17

Commencing the
Descent

“Lasciate ogne speranza,
voi ch’intrate”

Dante Alighieri
The Divine Comedy

The gates of hell now ajar; the hellish brute now released;
as Bucchianeri once said, “The gates of hell are terrible to
behold, are they not?”; but alas, what is to be done now?
How are we to enter Inferno? If you remember, we have told
our machine where to find its binaries and thus we can simply
run Inferno’s emulator by typing sudo emu whenceforth one’s
Bash or Zsh prompt disappears; instead, a simple semi-colon
becomes visible — you have trot onto Inferno’s ground; you
have stepped through the gates of hell, set ajar by our previous
actions, and entered Beëlzebub’s realm.

Certainly, it is to be wondered how this differs from our
previous operating system — or from our previous shell for

18 The Inferno Adventures

that matter —, for it seems like a mere inferior version of what
appeared on our screen before. Indeed, it looks to respond to
commands in much the same way as our Linux shell. Typing
ls yields the same results as doing so on Bash; have our
efforts been in vain? Are we to believe that Inferno is but a
mere clone of Unix? Nay, it is but the first impressions that
are the cause of this confusion; for you must keep in mind
that Inferno was indeed created by the same geniuses that
had once, in days long past, created Unix.

Undoubtedly proud of their previous achievements, they
decided to implement — a wise decision, might I add — a
large number of the commands that are to be found in Unix-
based systems in Inferno. Yet you should not let yourself get
fooled, for this is not Unix — ’tis merely hell hiding in plain
sight; and whilst it is indeed possible to use Inferno from its
shell only, it does provide a window manager; for, as I hope
you remember, they longed to create an operating system
that was built with a window manager in mind and not have
it be, as was the case with Unix, an afterthought, carelessly
plastered onto it years later.

Its window manager — simply and rather uncreatively
titled wm — can be evoked by typing wm/wm, whereupon one
will be greeted by a small window; indeed, its appearance is
somewhat dull, consisting of a grey background, and a grey
task bar — truly an atrocity to behold. Indeed, it is puzzling,
for what is to be done? What is to be clicked? Whence can
programs be started and wherefrom is a poor fellow supposed
to receive help? Having been tossed down into this abysmal
realm of dread, one is reminded of what, in his book Paradise

Commencing the Descent 19

Lost, John Milton writes: —

Seest thou yon dreary plain, forlorn and wild,
The seat of desolation, void of light,
Save what the glimmering of these livid flames
Casts pale and dreadful?

Figure 1: Inferno’s window man-
ager with start menu

For indeed it seems
what have stridden upon
a system wholly encom-
passed by the colour of
despair, with no task to
accomplish but to gaze
upon its grey insipid-
ness. You should not fret,
though, for this is but a
disguise; hiding beneath
its ghastly appearance lie
programs who are waiting
eagerly to be used. To aid

you in your journey, you shall henceforth be provided with
photographs of the system as I see it, since I believe this will
simplify your journey considerably; indeed, those poor souls
whom the ability to use Inferno has not been bestowed, for
they lack a proper system install it onto, are what these pho-
tographs will aid most substantially, as they may therefore
see the happenings of our doings without needing their own
installation.

But withal, those keenly-eyed amongst us may have ob-
served the rather small square icon at the very bottom left of

20 The Inferno Adventures

the screen, whose appearance is reminiscent of that of a tree,
which is situated next to a sickly grey box containing the text
“Log”. The latter’s function should be quickly understood by
even the more simple-minded — it opens a window containing
logs, which tell us about things that have inevitably gone
wrong — and the function of the tree-like one, too, should
be easily understood; for what hides in this precise spot on
most operating systems? Why indeed, it is the start menu
whose function, in most systems, encompasses the display of
programs to start.

Even its appearance is rather colourless and uninspiring,
for it consists merely of three sub-menus and six readily
executable programs — of which there is one titled “Manual”
and that shall be the one we will inspect first, as it may prove
invaluable to receive some additional information.

Figure 2: Manual

What then appears is
a window filled with text
— as one would expect a
manual to be — and a
search bar across the top;
this can be used to inves-
tigate a particular com-
mand’s or program’s func-
tion. Thus, if we wished
to be presented with in-
formation regarding the
window manager, simply
typing wm into its search and pressing the Enter key will yield
said requested information.

Commencing the Descent 21

This program will prove itself invaluable, for it will dis-
pense information regarding practically every single part of
this operating system and we shall be referring back to it
frequently.

Time has now come to open Pandora’s box and exam-
ine what programs Inferno provides for us, how they are
used and what can be done with them. You shall notice the
rather intriguing, yet often mysterious and strange, assort-
ment of programs this operating system has to offer which,
unfortunately, is much smaller than I had at first anticipated.

22 The Inferno Adventures

Combing through Hell’s
Inventory

“O how unlike the place
from whence they fell!”

John Milton
Paradise Lost, Book I

Upon having finally entered and briefly explored Inferno,
we shall now begin our more thorough investigations of which
kinds of utensils are available to us, of which there appear
to be numerous. In the following section we shall explore
these in brief, for most of them are meagrely equipped with
functions; yet there do exist a few that are able to do much
and we shall thus look at these in more detail.

I also provide you with photographs of these programs
frequently.

Files 23

Files Its name is, I believe, rather self-explanatory — it
merely provides us with a list of files; yet, it appears

to struggle doing so, for when one tries to open it, one is
pestered by the log, which puts itself into the spotlight to
warn us of missing items. Lamentably, its messages are of
little help; they speak of the user root which, apparently,
does not exist; and they also speak of a missing plumber —
truly tragic that the system seems to be having problems
with its plumbing.

Figure 3: Inferno’s Files program

However, I believe our
newly acquired friend, the
manual may be of help;
let us thus spawn it hither
once more and ask it for
advice. It tells us the fol-
lowing: —

Plumber pro-
vides high-level
message-passing
between appli-
cations.

This helps us discern what its purpose is; but alas, this
helps us but scantly in ascertaining what the error is implying
— indeed it appears our installation is missing this plumber
altogether, but what is one to do to mitigate this?

In addition to the aforementioned information — and
more, for I showed but the main definition of what plumber

24 The Inferno Adventures

does —, the manual page provides us with a file path wherein
we are to find its rules for a specific user: /usr/user/lib/plu-
mbing, wherein user must be replaced by the user who is
currently using the system.

Figure 4: Inferno’s Files program
with menu

Upon entering the
/usr directory, one imme-
diately notices that there
is but one lonely user
present, namely inferno
and the priorly mentioned
root user is nowhere to
be found.

This discovery lead
me to believe that a root
user must be created, a
task that, due to Inferno’s
philosophy of all things
being files, should be easily accomplished by simply copying
the inferno folder and renaming it root; hence we created
a second user, the one which Files was so desperately longing
after, whereupon we should have finally gained the ability to
execute the File program without it deeming it necessary to
throw errors at us for things we did not do.

Indeed, having done so appears to have tempered him who
dwells below the surface of Inferno, for Files opens without
errors; why, it finally allows us to click folders to open them
at inspect their contents freely and without being disturbed.

But withal, one may now ask oneself, has what I have
just done really been the correct way? Surely, one should be

Files 25

able to log in as a different user; yet, unfortunately, I have
been unable to ascertain how that is possible, for the manual
page of wm proved to be of but meagre help. There seems
to exist a command titled logon which, if used with wm, is
supposed to provide a screen whereon a user can login; but
alas, I have been unable to get it working.

Figure 5: Brutus

Upon having fixed
this program, one is now
able to open, copy or
remove files by click-
ing and pressing the left
mouse button; thereupon,
a menu appears where
one may select an option.
Should you choose the op-
tion to open a particular
file, a new program will
reveal itself titled Brutus;
yet mysteriously, one is unable to find it inside the start menu,
for there it is nowhere to be found — an elusive program
indeed, and one that, I must admit, I trust but little; for
it appears to have gotten its name from one of those vile
politicians who, back in yonder days of the Roman Empire’s
glorious rule, stabbed Gaius Julius Caesar to death; why
indeed, it was he whom Caesar asked, “Et tu, Brute?” in
Shakespeare’s play, for Caesar did not believe even Brutus
would have betrayed him; and as I have learnt to not trust
this name, I shall be weary of it here, too.

Yet we are lucky, for there exists a manual page regarding

26 The Inferno Adventures

Brutus which proclaims that: —

Brutus is a multi-file editor for UTF format text
files.

Indeed, it appears to be but a mere text editor wherewith
one is able to edit and view files; yet this raises two questions,
for why can it not be found within the start menu and what
is the reason for the existence of two text editors? Since,
apart from vicious Brutus, there is another; one which is
much more simple, something reflected in its name too, for
it is called — in a truly uncreative Unix-fashion — merely
Edit. I wonder, whither has their philosophy been tossed;
their philosophy of being minimalist, for I cannot grasp the
existence of two editors — whereof one being notably inferior
— whose functions and purposes are nigh identical.

Charon Continuing Inferno’s horrid tendency of naming its
programs after beings whose names shall forever

be associated with Death, its web browser is titled Charon;
indeed he, from whom this program has received its name, is
the ferryman of Hades; he whom the Greeks believe one must
pay a toll, for otherwise they mayn’t cross the river; the river
Styx; the infernal waters, which separate the land of those
who live and those who are dead; and he who is unable to
pay his dues is forced to wander its shores for æons before
Charon shall return to take him to yonder side. Indeed, it
was the custom of the Greeks and the Romans to place a coin
into the mouths of the Dead, lest they arrive at the shores
of the sulphurous waters, impoverished and without a coin

Edit 27

to part with, whereupon they would be damned to wander
its dismal coasts for years upon years, for Charon would not
take aboard those poor souls who did not pay; nay, he would
leave them ashore.

Figure 6: Edit and its options
menu

Truly, it appears that
even we have been left
ashore, damned to wan-
der aimlessly, for we are
unable to open websites
but the one of Inferno it-
self. Must we, too, wait
æons for him to return to
us so that he may row us
across the Internet river
at speeds unfathomable,
to allow us to reach other
computers, located half-
way across the world, in but the blink of an eye?

It surely appears to be the case, for I have been unable
to ascertain its problem. It complains of a missing host file,
but the lack of verbosity is truly aggravating; and lest my
computer gets thrown through the window I shall continue
with the next program.

Edit Having briefly touched upon the subject of editors
when discussing Files and the editor wherewith it

comes bundled, Brutus, which it opens when attempting
to view files, we shall one more comment on the subject
of editors. Since, as we have observed, one cannot spawn

28 The Inferno Adventures

Brutus from the start menu; nay, for there one may find but
plain Edit, a truly bleak program, wholly overshadowed by
its seemingly big brother Brutus. Its option menu sparsely
populated and its contents cryptic — for what is Limbo?

I must confess that I indeed do know of Limbo and its
purpose; for it is the language wherein one is supposed to
write programs for Inferno, to extent its reach into the world
and to expand upon its existing functions. But alas, ’tis a
subject much too advanced for us at this stage, for barely do
we even know Inferno’s core functions; how are we, then, to
write programs for it? Fear not of missing out, for we shall
examine Limbo, but first we must understand Inferno’s inner
works; only having done thusly shall we be aptly qualified to
use Limbo.

Yon program, which reminds me of those used in bygone
days, truly appears to be but a meagre editor and whereof
not much can be said — it does, indeed, enable one to edit
files, but this is all it is able to accomplish.

Acme For once we are presented with a program whose
name is rather descriptive; for it derives from the

Greek’s ακµη which one can translate into English as zenith
and truly, it is the most advanced of all programs we have thus
far seen; and despite its appearance — which, alas, departs
but little from that of Edit or Brutus —, it appears to be the
system’s peak. Indeed, it strikes one as being feature-rich —
that is, in Inferno’s terms, for the majority of its programs
are rather barren — and rather sophisticated. Therefore, I
thought it pertinent to engage with it more thoroughly and

Acme 29

that we shall do.

Figure 7: Acme

I was initially con-
fused wherefore the name
Acme had been chosen,
for I believed it to be but
a mere acronym; yet this
appears not to be the case
and I believe my judge-
ment of its name having
been chosen for its om-
nipotence, as I believe
one can do but little with
Inferno were it not for
Acme, is to be deemed accurate. Perhaps, though, I ex-
aggerate, but I am confident in believing that most tasks
would require one to do a much larger amount of work without
it.

Ostensibly, one may wonder for what purpose the other
programs have been constructed, since, indeed, Acme does
what all other programs mentioned thus far — with the
exception of Charon — can. The manual page for Acme
describes it thusly: —

Acme manages windows of text that may be
edited interactively or by external programs. The
interactive interface uses the keyboard and mouse;
external programs use a set of files served by
acme[.] [...]

Speaking of its manual page, it is the largest I have seen

30 The Inferno Adventures

thus far, containing a great deal of information regarding its
functions. Therefore, it shall be impossible for us to cover all
its parts in-depth — indeed, we shall leave out a fair portion
of it — and instead we shall be focussing on a small number
of things I deem to be important or of interest.

The first aspect of this program I wish to illustrate is its
mouse support; for, indeed, it may be controlled by one’s
mouse, yet its controls may seem rather unintuitive to those
more accustomed to modern systems. One must also be
prudent to differentiate between the title bar Acme has been
imparted with by wm and its inner title bars, as the one which
it has received from wm controls but the “outer” window of
Acme itself; that is, it controls all of Acme, but not less and
the inner parts of Acme cannot be manipulated or controlled
using the outer title bar. The outer title bar, should my
explanation sound too bizarre, is the title bar which contains
the name of the program on its left side; and three buttons
which enlarge, minimise or close the window respectively on
the right side.

These two title bars have two rather distinct functions
and controls, for the outer title bar is controlled in a fashion
similar to that which is used on operating systems such as
Windows wherein you are required to push the left mouse
button to activate their functions. Yet the inner title bars
depart from this control scheme quite significantly — and
wherefore this has been done eludes me greatly —, for one is
required to make use of all available mouse buttons; indeed,
using the middle mouse button is a frequent occurrence in
Inferno.

Acme 31

I believe it pertinent, though, to commence by studying
the individual parts of the inner title bars prior to my expla-
nation of their controls — for how may one control something
one has but little knowledge of?

As visible on the provided photograph, there exist several
windows within Acme, whereof each is in the possession of its
own bar; yet there also exists a title may I shall henceforth
call the master title bar, for therewith one may control all
of the inner windows — indeed, one may spawn a new inner
window with it. Peculiarly, there appears to exist an Exit
field on the master title bar, rendering the X of the outer
title bar redundant; surely, leaving it out would have not
impeded the program’s functionality in any way but could
have aided in making it appear less complicated.

In addition to this absolutely expendable button and the
aforementioned button permitting one to spawn a new column
— or inner window —, three other buttons can be observed;
namely Kill, Putall and Dump — truly abhorrent names,
I must confess, and ones that do not appear to have any
discernible function, for clicking them seems to do but little.
Thus, consulting the manual would no doubt be advantageous.

Upon having done so, one should have ascertained that
Dump saves Acme’s current state — which, I believe, encom-
passes the currently opened inner windows / column and
their position within Acme itself — to “acme dump”; it truly
appears these names have been chosen by someone of but
little good taste, for they are quite dismal beyond any doubt
— surely, the choosing of a less vulgar and perhaps more
descriptive name would not have been too difficult a task.

32 The Inferno Adventures

The function of the Kill button is, to me, rather equivocal,
for the manual has but little information regarding its function
and merely states the following: –

“Send a kill note to acme — initiated commands
named as arguments”

Given this rather tenuous explanation of its function
is, unfortunately, insufficient for me to comprehend it; due
to that, I shall refrain from commenting on it further and
proceed with the last item, namely Putall.

Yet, I was forced to uncover, it, too, appears to have
a rather cryptic manual entry, for it describes its function
thusly: —

“Write all dirty windows whose names indicate
existing regular files”

It is truly remarkable how a manual page has the ability
to baffle one so greatly that he is thence even more perplexed
than he was prior to having read it. For, indeed, why would
there be dirty windows on an operating system; something
that does not physically exist? Let us therefore continue by
examining the other windows’ title bars, even though they,
too, appear to contain names I find much too cryptic.

The very first item thereon is a simple square, either
suffused entirely by a cerulean colour or merely possessing
borders of that colour, in which case the other parts of the
square are entirely white; yet the reason wherefore there exist

Acme 33

two distinct types of rectangles escapes me, for they seem to
fulfil the exact same functions, namely moving the window
around. Indeed, if one wishes to change the location of one
of Acme’s inner windows, one is required to press and hold
the left mouse button and hence move the window whither
one desires.

Located to its right, a button titled New can be found,
wherewith one may spawn additional inner windows.

Thereafter appears Cut, which allows one to remove the
text which has been selected and, as the manual states, which
the computer then places into the “snarf buffer” — horrid
naming conventions will, undoubtedly, not disappear hence-
forth. Snarf appears to be the name of the system’s clipboard,
which also explains the function of the Snarf button which
can be seen further to the right — it copies selected text into
the clipboard.

Zerox has a rather intriguing function, for upon having
clicked it, a new windows containing the text which appeared
in the old window, emerges; truly a most helpful function
to be in the possession of, for it may save one precious time.
Yet, it may not behave in the exact manner one expects it
to behave, as it not merely spawns a new window; nay, it
quasi-mirrors the window whence it was spawned, leading to
the existence of two windows which each contain the exact
same content. Indeed, changing the content of one window
reveals that the cloned window, too, has its contents altered
in the same manner, whereas my initial speculation was that
Zerox would create a window which one could alter separately
— but alas, this appears to not be true.

34 The Inferno Adventures

Figure 8: Inferno’s games

The reason behind the
existence of such a func-
tion eludes me somewhat,
for I am unfortunately
incapable of understand-
ing how one may use
this in a meaningful way;
having one’s window pre-
cisely mirrored, to me, is
a rather impractical be-
haviour. If, instead, one

was able to modify the contents of each window indepen-
dently, I would understand and even wholly endorse it; yet I
fail to comprehend this particular implementation.

There exist a small number of additional functions, yet I
found those but of little importance to mention here and we
shall thus proceed with other programs.

Tetris and Bounce The system is bundled with two games,
one of which one may scantly call a

game, for it is but a screen permeated by bouncing balls of
varying colours and the only controls one has over said balls
is the amount appearing on screen, which one may de- or
increase, and the ability to draw lines, off which the balls are
able to bounce.

In addition to this, an actual game— a reproduction of the
acclaimed Tetris, a game which appears to have transcended
time itself — can be played. Yet, once more, I cannot fathom
wherefore this would be included, for this operating system

Utilities 35

was intended mainly for programmers who, I would like to
argue, probably would not spend any time with playing a
game, as their host operating system would have a much
more capable environment for such an endeavour.

I am wholly convinced by the fact that, had they left
these games out, nothing of interest would have been lost
and I believe their reason for creating these is to boast about
their new programming language’s abilities.

Utilities Utilities
In addition to the aforementioned games, the system

incorporates a number of utilities, whereof some appear to be
of but very little use; indeed, the Coffee utility — a program
wherewith one is able to control the speed and shakiness
of half a dozen coffee making machines, spinning around
fruitlessly in front of a depiction of Dante’s Inferno — is
described as, “A whimsical plaything” within the operating
systems own manual; a description that I am in complete
agreeance with.

Aside from the rather peculiar coffee program, there exist
a number of other utensils, which are to be found in the start
menu’s Misc and System categories respectively; therewith
one may perform, amongst other things, system monitoring
tasks or receive various kinds of information, such as the
current date and time. Hereof, however, I found only a
small handful significant enough to include herein, such as
the rather simplistic, yet indispensable, task manger. It
functions in much the same manner as one would expect
and is indispensable insofar that, should matters turn awry,

36 The Inferno Adventures

one may terminate a program therewith in a swiftly fashion
without having to result to the kill command, saving one
precious time to be spent attending to matters more serious
and important.

Figure 9: The Coffee program

Another program I
found to be of much use is
the rather simplistic, yet
quite convenient, Colours
— although it appears
Inferno is indecisive re-
garding the spelling of
this word, for the title
bar thereof reads Col-
ors, whereas the start
menu entry uses the much
superior British English

spelling of Colours — which allows one to choose a colour of
one’s liking, whereupon one is shown said colour’s value in
RGB and Hex. Yet, I must admit, the colours appear to have
been arranged in a most peculiar fashion, with no discernible
logic therebehind.

Herewith we shall conclude this section, for the remaining
programs — of which, I must add, there are but a small
amount — are not worthy a mention herein, as they are
rather ordinary; examining these in-depth would be of but
little use. Instead, I believe we may henceforth begin with the
study of the rather alluring Limbo programming language.

Book III

Adrift in Limbo 39

Adrift in Limbo

“Have you ever wondered
what language they speak
in Limbo?”

Lee T. Gallup

We have trot upon foreign ground, onto the lands of a
country unknown — Let us being studying its language. Thus,
I believe it is time to shortly investigate the intricacies behind
the programming language this operating system has been
written in and wherewith one may create one’s own programs
for it — Limbo; truly, the name, once more, appears to have
been derived from Dante’s works — a matter I should not be
too astonished over — and bears strong resemblance to the
language used in the creation of the Unix system, namely C.

Unfortunately, I must admit with great sorrow, I am but a
mere novice regarding this intriguing programming language;
indeed, I have but very little knowledge of the C programming
language either. Therefore, I found it pertinent to add this
disclaimer here, as the forthcoming examples may not have

40 The Inferno Adventures

been written or explained in the best of manners and I hence
urge you to consider the study of a book dedicated solely to
the topic of programming if you wish to learn more than but
the simplest of aspects of this language.

Nevertheless, I shall herein attempt to teach you the very
basics of this programming language so that, should you wish
to continue your study of it, you will not dive into a more
advanced book without any prior knowledge; this, I dearly
hope, will greatly decrease the burden of attempting to read
a more advanced book on this subject and thenceforth ease
your journey in becoming more knowledgable.

Additionally, I shall be henceforth assume that you possess
a very elemental understanding of computer programming;
nonetheless, I strive to write everything in a way that even a
layman may grasp the majority of the subject by attempting
to unravel terms and concepts that may not be known to a
large portion of the population. Please be aware, however,
that to follow the upcoming chapter properly, you will require
a working Inferno installation; it is possible to simply read
along — I shall provide everything that is necessary to follow
this chapter without the need to have Inferno installed —,
yet it would be beneficial to follow along and experiment with
the code yourself.

Lastly, I greatly encourage you to glance at the Further
Reading section of this book, for therein you shall be pre-
sented with my personal recommendations for furthering
your wisdom regarding both the operating system and the
programming language wherewith it was forged.

Firstly, it is paramount to understand a Limbo program’s

Adrift in Limbo 41

underlying structure, for it may differ somewhat from other
programming languages; yet, Limbo’s syntax reminds me
greatly of that of the C programming language — whereof,
I believe, it was inspired. Nevertheless, there are a number
of differences — for, otherwise, it would be but a mere clone
of C and not a new language altogether — and should you
know C, you may find a large amount of the upcoming code
familiar, yet alien at the same time.

Programs written in Limbo are comprised of modules
which connect with one another to perform tasks. Each
module is further partitioned into two separate entities, every
one thereof having their own, distinct function, namely the
module implementation and the module declaration, which
customarily reside in their own, distinct file; the module
declaration being stored inside an .m file and the module
implementation in a .b file. Typically, having an entire
module be stored within just one file should be avoided for
anything but the simplest of programs.

The module declaration contains the functions and con-
stants that are to be made publicly available, whereafter
other modules may access them with ease; the implemen-
tation contains the actual code to be executed and is thus,
generally, the file comprised of the largest amount of lines. A
module is not required to have but one mere implementation
and frequently possesses several, each stored inside their own
.b file.

Additionally, Limbo’s ability can be greatly enhanced with
the help of libraries, whereof a small number of vital ones have
been included within the Inferno kernel, such as Sys, providing

42 The Inferno Adventures

system-related functions, such as print, wherewith one may
print text onto the screen; and Draw and Tk which may be
used to create graphical interfaces. Additional libraries can
be loaded to further increase the capabilities of Limbo and
add features that would otherwise be much to arduous to
program oneself.

Let us look at a program written by the majority of
programmers when they begin their study of a particular
programming language, a Hello World program; its intent is
to simply print the words Hello World on screen. To do so,
create a new file titled hello_world.b and add the following
contents: —

1 # hello_world .b
2
3 implement HelloWorld ;
4
5 include "sys.m";
6 include "draw.m";
7 sys: Sys;
8
9 HelloWorld : module {
10 init: fn(ctxt: ref Draw ->Context , args: list

of string);
11 };
12
13 init(ctxt: ref Draw ->Context , args: list of

string) {
14 sys = load Sys Sys ->PATH;
15
16 sys ->print (" Hello , World !\n");
17 }

Adrift in Limbo 43

Figure 10: The Hello World pro-
gram

You may use the pre-
viously discussed Edit or
Acme programs to cre-
ate and save this file
directly within Inferno
itself, whereupon you
may save it and open a
new shell; therein you
must find the directory
whence your program has
gone and type the follow-
ing command limbo -g

hello_world.g. Thereupon, a new file will be constructed
simply titled hello_world and to execute it you must type
hello_world into the shell window; you shall then be greeted
by a “Hello, World!”.

We shall now begin examining each line of this program
separately, so that we may comprehend how this intriguing
language functions; for merely copying and pasting a pro-
gram’s code will not allow us to fully — or, indeed, at all —
grasp its underlying structure.

44 The Inferno Adventures

Deliverance from Limbo

“From there we came
outside and saw the stars”

Dante Alighieri
The Divine Comedy,

Inferno

Indeed, we shall henceforth escape from Limbo; from the
edge of Hell itself and ascend to higher grounds; and we
shall do so by furthering our knowledge of Limbo itself, for
understanding something frequently yields the knowledge
that things are not as complex as they may appear.

I shall herein intermittently refer to the previously dis-
cussed code snippet and the numbers printed beside each line;
I therefore highly urge you to bookmark page 42, so that you
may open the code at a moment’s notice.

The code begins with a comment, a piece of text that
the program will ignore and whose sole purpose it is to
provide some information to those who read the source code;
the comment here is merely stating that the file’s name is

Deliverance from Limbo 45

hello_world.b. To indicate that a piece of text or code is a
comment, one must use the pound (#) symbol, whereafter
the line it is located on will be ignored by the compiler.

Figure 11: The included libraries

The first actual piece
of code is located on line
3, whereon the current
file is marked as being
the implementation of the
HelloWorld module, the
name of which can be cho-
sen by the programmer.
You may have also ob-
served the semi-colon at
the end of this line and it
serves a very crucial func-

tion; for if you forget the semi-colon, the program will not com-
pile and instead yield the following error: hello_world.b:3:
near ’ include ’ : syntax error. You may wonder
why this occurs and the answer is rather straightforward:
one must add a semi-colon behind every statement; this can
be easily forgotten, especially in the beginning, and can quite
easily lead to frustration, especially in longer programs —
therefore, take heed, for you surely do not wish your program
to throw errors at you, which then requires you to scour the
file for a missing semi-colon.

Thereafter we include two of the aforementioned libraries
to aid us in creating this program, namely Sys and Draw.
Should you wish to view these modules’ code, you can do
so by opening the directory wherein your inferno location is

46 The Inferno Adventures

located — which, in my case, is /usr/local/inferno — and
thereafter open the modules directory within. Placed therein
are the libraries one can readily load, including both draw.m
and sys.m; as draw.m is not actually needed within our Hello
World program, we must merely open sys.m, wherein we
can find a large number of lines, each providing a different
functionality. Let us glance briefly at the parts we have used
in the creation of the Hello World program: —

1 SELF: con "$self "; # Language support for
loading my instance

2
3 Sys: module
4 {
5 PATH: con "$Sys ";
6 #...
7 print: fn(s: string , *): int;
8 #...
9 }

One of the most important functions of a Hello World
program is, rather obviously, the printing of “Hello, World!”
onto the screen and this functionality is located within sys.m.
The print function is declared therein and it takes a string as
its argument — a string is a sequence of letters and symbols,
such as “Hello” —, however, in addition to taking a string
as its argument, it may take other types of data as well, as
indicated by the star. One may also observe the declaration
of the PATH constant (con) — a type of data that cannot be
altered, unlike a variable —, to which the value of "$Sys"
has been assigned; we shall be referring to this again shortly.

Line four of our Hello World program contains the defi-

Deliverance from Limbo 47

nition of a variable, namely sys; declaring a variable — or,
for that matter, functions and other declarable parts of this
programming language — adheres to the following formula,
wherein DATA must be replaced by what the variable shall
store: —

1 variableName : VariableType DATA;

Thus, if you wished to store the “Hello, World!” text
within a constant, you could alter the previous program as
follows: —

1 # hello_world_var .b
2 # ...
3 init(ctxt: ref Draw ->Context , args: list of

string) {
4 text: con "Hello , World !\n";
5 sys = load Sys Sys ->PATH;
6
7 sys ->print(text);
8 }

We thus declared that text shall be retaining data of the
con type with the content of "Hello, World!\n" which is
then printed using the print function from the sys.m library.

Let us return, however, to the tenth line of our original
code, whereon we find the module declaration; which, I sin-
cerely hope you recall, is what would typically be located in
its separate .m file — this has, however, been ignored here,
for it is unnecessary to split the program, as it us but a mere
seventeen lines long — indeed, splitting programs whose scale
is as minor as this may actually be detrimental and induce
confusion; this is, without a doubt, especially noticeable with

48 The Inferno Adventures

those people who are new to the language and, perhaps, even
novices regarding computer programming in general. If, how-
ever, you longed to create a separate file for your declaration,
you would be required to include it as you did the others
as well, by adding a third include statement at the top as
follows, wherein module_file_name must be replaced by the
actual file name you gave the declaration file: —

1 include " module_file_name .m";

The declaration spans three lines in total, namely nine
through eleven and is akin to what one may witness in pro-
grams written in programming languages such as Java or
C, for those require the creation of a main method, which
operates in a similar manner to the init function created
within our Hello World program; in Java, it may be written
as follows: —

1 class HelloWorld {
2 public static void main(String [] args) {
3 System .out.print (" Hello , World !\n");
4 }
5 }

One is immediately able to spot the similarities, for the
second line of this code snippet serves a function identical
to the tenth line of our Limbo program — or rather, almost
identical, for in Java, there is no need for a separate declara-
tion as is the case in Limbo. Thus, in Limbo, we are required
to both declare and thereafter execute our init function,
which one may see from line thirteen onwards, for therein the
init function is executed; and in there, the code that will be

Deliverance from Limbo 49

run can encountered.
Should you be unfamiliar with the different types of brack-

ets that are used — or, indeed, the structure and syntax of
functions altogether —, I shall attempt to briefly explain the
difference between them; let us thus consider merely lines
thirteen and seventeen: —

1 init(ctxt: ref Draw ->Context , args: list of
string) {

2 #...
3 }

Everything placed in-between the round brackets is seen
as an argument which can be passed to the function, whereas
the code placed between curly brackets is the so-called body of
the function; if you, for example, wished to create a function
that greets people you may do so as follows: —

1 # greet_function .b
2 implement Functions ;
3
4 include "sys.m";
5 include "draw.m";
6 sys: Sys;
7
8 Functions : module {
9 init: fn(ctxt: ref Draw ->Context , args: list

of string);
10
11 };
12
13 greet: fn(text: string): string ;
14
15 greet(myname : string): string {

50 The Inferno Adventures

16 return "Hello " + myname + "\n";
17 }
18
19 init (ctxt: ref Draw ->Context , args: list of

string) {
20 sys = load Sys Sys ->PATH;
21 sys -> print ("%s", greet (" Marvin "));
22 }

Herein, we created a new function to which the name
greet has been appointed; and, as one may hopefully observe,
located within the round brackets, the argument one may
pass to it is to be seen, namely a string which will thence be
saved under the myname variable.

Enclosed by curly brackets, however, the aforementioned
function body can be found, wherein the actual code is situ-
ated; in this particular instance, the function’s purpose is to
return "Hello " + myname + "\n", wherein myname will be
replaced by the string passed onto the function.

The function is executed on line 21, placed within the
print statement, where it is run with the "Marvin" argument,
whereupon the function’s output — i.e. "Hello Marvin\n
— is printed onto the user’s screen.

Let us hence return from this minor divergence and con-
tinue on our path towards understanding our Hello World
program. Having briefly touched upon the subject of func-
tions, we shall thus begin the dissection of lines 14 and 16,
respectively; the statement on line 14 may come across as
rather bizarre at first glance: —

1 sys = load Sys Sys ->PATH

Deliverance from Limbo 51

Yet, as we have learnt, things frequently but appear to
be difficult, whereas, in reality, they can be explained and
understood swiftly.

If you recall, on line 7 of our Hello World program, a new
variable, namely sys, was created without any contents; the
contents are what will be added here. Indeed, we may have
included sys.m at the top of our program, but we have not
yet created an instance of it — for now it but eagerly awaits
to be used. Thus, to create such an instance, we are required
to load Sys from where it is located and thereafter store this
instance within a variable — which, in this case, is sys. To
load such an instance, the syntax load module module
_path is used.

Hence, we can utilise sys.m’s inbuilt PATH constant — as
we saw on page 46 — by simply referencing it using an arrow
thusly: Sys->PATH; this is the syntax we are required to use
whenever we wish to refer to a constant or function within a
different module.

Thenceforth, the sys variable will be in the possession of
a Sys instance, whereupon we may use it to access sys.m in-
built functions, which will be needed on line 16, whereon we
refer to the print function of Sys. This particular function,
as we ascertained previously, takes a string as its argument,
which we here supply as "Hello, World!". The trailing \n
is not printed verbatim, as it is a so-called escape character,
which, in this instance, creates a new line; had this been left
out, our printed text would appear in a rather inept position,
behind the % symbol of our shell instead of being located on
its own line.

52 The Inferno Adventures

Upon having analysed the Hello World program, let us
continue by learning about functions a bit more in detail;
thus, in the following section, we will be creating functions
capable of performing certain mathematical operations and
returning their result; additionally, we shall be studying the
differences between a small number of different data types
that can be found in Limbo.

Mathematical Inquiries 53

Mathematical Inquiries

“All truths are easy to
understand once they are
discovered; the point is to
discover them”

Galileo Galilei

As we have previously witnessed, one may specify which
type of data a particular constant or variable is able to store,
such as the string type — used to store an aggregation of
characters and even numbers — which thence is treated as
mere text. Using this type of data is beneficial for text which
is to be printed onto the screen or for storing names and
addresses, yet it is ineffective for mathematical tasks, such as
the subtraction or addition of two numbers. Let us inspect
the following example: —

1 # string - addition .b
2 # Include statements and declaration have been

left out , same as previous code snippets
3

54 The Inferno Adventures

4 init (ctxt: ref Draw ->Context , args: list of
string) {

5 sys = load Sys Sys ->PATH;
6
7 num1: con "1";
8 num2: con "2";
9
10 sys -> print(num1 + num2);
11 }

Herein, two constants, namely num1 and num2, have been
defined, each containing a number placed inside quotation
marks; hence, both of these are, in actuality, strings. This,
in turn, implies that Limbo does not treat them as numbers
per se; nay, instead, they get treated as text, which is why
the print statement outputs 12 instead of 3.

Thus, it is to be remarked, the + operator situated within
the print statement does not perform a mathematical func-
tion in this particular instance, as its function is altered
when applied to strings; for there, the operator functions as a
concatenator of sorts, simply joining two pieces of text with
one another. If we wished to add numbers and receive an
accurate mathematical result, we must use integers — or,
indeed, other type of numbers — instead; and, if we desired,
we could simply create a new function titled add, whose sole
purpose it is to accept two integers as its arguments, add
them together and return the result. Such a program could
be written as follows: —

1 # plus - function .b
2 implement IntAddition ;
3

Mathematical Inquiries 55

4 include "sys.m";
5 include "draw.m";
6 sys: Sys;
7
8 IntAddition : module {
9 init: fn(ctxt: ref Draw ->Context , args: list

of string);
10 };
11
12 add: fn(num1: int , num2: int): int;
13 add(num1: int , num2: int): int {
14 return num1 + num2;
15 }
16
17 init (ctxt: ref Draw ->Context , args: list of

string) {
18 sys = load Sys Sys ->PATH;
19 sys -> print ("%d", add (2, 4));
20 }

Line 12 of this piece of code contains the declaration of
the add function, taking two integers as its arguments and
returning but one integer, namely the sum of the addition. In
Limbo, it is imperative to declare the type of data a function
may return; this is wherefore the : int; part is to be
found at the end of the function declaration. The previously
studied greet function, too, contained such a statement;
therein, however, it is supposed to return a string instead of
an integer, for the name of a person cannot be stored within
an integer.

An integer, should you be unfamiliar with this terminol-
ogy, is a whole number, id est a number which one can depict

56 The Inferno Adventures

without the usage of a fractional component; an example of a
number with a fractional component would be 2.2. Therefore,
should you supply the newly created add function with a num-
ber containing fractions, you shall be greeted by the follow-
ing error: ’add’: argument type mismatch: expected
int saw ’2.200000047683716’ of type real. Here I pro-
vided not an integer, but a number containing a fraction,
namely 2.2.

If you instead yearned to use numbers containing frac-
tional components, you would be required to use real numbers,
for these types of numbers contain both integers and frac-
tions. We shall consider the changes to be made to our
current code so that it may accept real numbers shortly; first,
let us continue by examining the current code.

Lines 13 through 15 see the implementation of our func-
tion, which shall simply return the sum of both integers it
was supplied with.

Lastly, line 19 contains the print statement we have used
numerous times before; yet herein, its structure appears to
deviate slightly from that which was used priorly, for here it
contains two statements instead of the single used previously.
As I hope you recall, print may take only a string as its
argument and thus, supplying it with an integer directly will
yield an error. For example: —

1 sys -> print(add (2, 4));

This would return the following error upon compilation:
’sys->print’: argument type mismatch: expected st-
ring saw ’add(2, 4)’ of type real. Therefore, if we

Mathematical Inquiries 57

wish for print to actually print the sum of our addition,
we must do thusly: —

1 sys -> print ("%d", add (2, 4));

Here, the first argument supplied to print is "%d" which,
I assume, stands for digit; it is used as a reference to the
second argument, namely the execution of our add function.
Please also note that, henceforth, I shall be calling the "%d"
strings value reference code. The same was required in our
aforementioned greet program, wherein it was written as
follows: —

1 sys -> print ("%s", greet (" Marvin "));

Herein, the "%d" has been replaced by an "%s" instead,
for the greet function does not return an integer, but a string
instead.

Thus, the first argument receives the value of the second
argument and, as it is located within a string, print is able
to use it. You may append as many argument pairs as you
wish, so long as you correctly specify their data type using
the % parameters. Hence, one may combine both the greet
and add functions within the print statement as follows: —

1 sys -> print ("%d%s", add (2, 4), greet (" Marvin "));

This would return both the sum of our addition and a
text which reads "Hello Marvin".

If, instead, we longed to create a function which allowed
us to add real numbers, we would be required to change the
code accordingly: —

1 implement RealAddition ;

58 The Inferno Adventures

2
3 include "sys.m";
4 include "draw.m";
5 sys: Sys;
6
7 RealAddition : module {
8 init: fn(ctxt: ref Draw ->Context , args: list

of string);
9 };
10
11 add: fn(num1: real , num2: real): real;
12 add(num1: real , num2: real): real {
13 return num1 + num2;
14 }
15
16 init (ctxt: ref Draw ->Context , args: list of

string) {
17 sys = load Sys Sys ->PATH;
18 sys -> print ("%f", add (2.2 , 4.0));
19 }

Herein, we altered the data types our function is able
to receive from int to real, changed the data type it will
return to real and changed the formatting within the print
statement to the value reference code "%f" instead; this, I
believe, stands for floating point number. Furthermore, we
are required to convert all integers — in this example, 4 — to
a real number by adding a .0 behind it. The reason behind
this is that henceforth, our function may only accept real
numbers; and even though integers are technically part of
the real numbers, we must nonetheless supply our function
with a number containing a fraction — even if said fraction
is zero.

Mathematical Inquiries 59

Withal, it would be possible to convert an integer into a
real number by simply adding real in front of it; we could
thus revise the print statement thusly: —

1 sys -> print ("%f", add (2.2 , real 4));

In addition to the aforementioned data types, there exists
another one titled big, which is, essentially, a regular integer
which can hold larger numbers; its value reference code is
%bd which can be remembered as meaning big digit. There
are, however, even further data types to be found within this
language, but we shall be discussing them only when we are
required to use them.

Let us now examine a simple way of handling user input
via command line arguments, wherewith we may improve our
previously created greet program.

60 The Inferno Adventures

Say, what is thy name?

“The secret of getting
things done is to act!”

Dante Alighieri

We shall now be improving upon our greet program, for
the version we created is rather unwieldy; indeed, we are
required to edit the source code and thereafter recompile the
entirety of the program whenever we wish to alter the name
of the person being greeted — truly, a most ineffective way
of handling this matter. Instead, it would be much more
effective to supply the name of the person whom we wish to
greet when running the compiled program and one possible
way of doing this is using command line arguments.

Command line arguments are commonly seen with pro-
grams one is meant to execute from the command line, for
they add a convenient way of allowing user input; for example,
a command line argument of the Linux tar command would
be car — yielding tar caf — wherewith one may create a
new tar archive.

Say, what is thy name? 61

Let us hence glance at one possible implementation of a
greet program one can supply with a name using a command
line argument: —

1 # greet.b
2 implement GreetImproved ;
3
4 include "arg.m";
5 include "sys.m";
6 include "draw.m";
7 sys: Sys;
8 arg: Arg;
9
10 GreetImproved : module {
11 init: fn(ctxt: ref Draw ->Context , args: list

of string);
12 };
13
14 greet: fn(name: string): string ;
15
16 greet(name: string): string {
17 return "Hello , " + name + "\n";
18 }
19
20 init (ctxt: ref Draw ->Context , args: list of

string) {
21 sys = load Sys Sys ->PATH;
22 arg = load Arg Arg ->PATH;
23
24 arg ->init(args);
25 input := arg ->arg ();
26
27 sys -> print ("%s", greet(input));
28
29 }

62 The Inferno Adventures

As you may have noticed, we are calling upon the help
of a library we had not used previously, namely arg.m; this
library possesses the code which allows us to easily handle
command line arguments. On line 8, just as we were required
to do with sys.m, we see the creation of a new variable titled
arg of the Arg type, which shall shortly be filled with an
instance of the Arg library.

The greet function itself has not been altered and one can
copy it verbatim from our previously created greet program.

Lines 22 through 25 contain all the declarations and ref-
erences we are required to use in order for us to be able to
properly employ the arg.m library, beginning with storing an
Arg instance within the priorly made arg variable on line 22.

Thereafter, on line 24, we execute the init function
within the Arg module, to which we supply the args variable,
which we have defined within the init function of our current
greet.b program. Let us briefly view the Arg module’s code:
—

1 Arg : module
2 {
3 PATH: con "/ dis/lib/arg.dis ";
4
5 init: fn(argv: list of string);
6 setusage : fn(usage: string);
7 usage: fn();
8 opt: fn(): int;
9 arg: fn(): string ;
10 earg: fn(): string ;
11
12 progname : fn(): string ;

Say, what is thy name? 63

13 argv: fn(): list of string ;
14 };

The init function herein is rather similar to the one we
are using within our greet program, with the sole differences
being the omission of the ctext variable and the renaming
of args to argv.

Additionally, let us decipher the declaration of the args
variable within the init function, for it creates a variable
which may store list of string; as we have discussed an-
tecedently, a string’s function, in essence, is to store text.
Thus if we wished to store a larger number of strings within
a list, we can do so by utilising a list of string data type,
which allows one to save strings in a numbered list, where-
from we can retrieve particular entries. The entries stored
within the args variable is the data we enter after typing our
program’s name.

Thus, taking our current greet program as an example,
if we typed greet Marvin into the shell, the first argument
will be the program itself — namely greet —, whereas the
second argument will be Marvin. The arg function will thus
return the second argument of our program and ignore the
first argument, or those following the second one. If you
wished to retrieve the first argument, the function progname
should be used instead.

On line 25, the declaration of the input variable can be
found with a rather strange looking sign, namely :=; this is
used whenever you wish to write both the declaration of a
variable and its functions on one line; in essence, it is the

64 The Inferno Adventures

amalgamation of : — used to declare a variable — and = —
which one uses to confer a particular value to the variable.

The value we herein assign to it is arg->arg(), id est, the
output of the arg function within the Arg module — which,
as I hope you recall, outputs the first argument provided
following the name of the program itself.

Then, lastly, line 27 concludes the program by printing
the output of the greet function, whom we provide with the
user input stored within the input variable.

However, a large portion of names tend to consist of more
than but one word and as our improved greet function only
returns the value of merely one of the appended command line
arguments, it may not work with scores of different names.
Thus, if we wished to work with all affixed arguments, we are
required to work with so-called loops.

In Perpetuum 65

In Perpetuum

“The secret of getting
things done is to act!”

Dante Alighieri

Indeed, loops, as the name may suggest, perform a certain
task — that which is placed within them — for a certain
duration; one generally assigns said duration to the loop as a
mathematical condition, for example: so long as statement
x returns the value true, execute the following code. This
type of loop is titled a while loop.

In addition to while loops, another type of loop, namely
the for loop, is also to be found. Therein you define a variable
within the head of the function, add a condition and, lastly,
provide an operation that is to be conducted upon the priorly
defined variable. For example, one may construct a for loop
in whose head the variable x is defined as an integer with a
value of 0; thereafter specify that the loop is to be run as
long as x is less than 10; and thereupon instruct the loop to
increment the value of x by 1. This would result in the code

66 The Inferno Adventures

placed within the functions body to be executed ten times.
Such looks thusly in Limbo: —

1 # for_loop .b
2
3 # ...
4 init (ctxt: ref Draw ->Context , args: list of

string) {
5 sys = load Sys Sys ->PATH;
6 for (i := 0; i < 10; i++)
7 sys ->print ("%d, ", i);
8 }

This program would return the numbers 0 through 9
separated by a comma.

As heretofore discussed, the arguments appended to our
program are of the type list of string; this allows us to
iterate over each entry, store it in a regular string and print
the results — printing lists on their own is, unfortunately,
irrealisable. Let us thus improve our greet program even
further, by using our newly acquired knowledge of loops so
that a user may append more than one name: —

1 implement GreetEvenMoreImproved ;
2
3 include "sys.m";
4 include "draw.m";
5 sys: Sys;
6
7 GreetEvenMoreImproved : module {
8 init: fn (ctxt: ref Draw ->Context , args: list

of string);
9 };
10

In Perpetuum 67

11 init(ctxt: ref Draw ->Context , args: list of
string) {

12 sys = load Sys Sys ->PATH;
13 args = tl args;
14 for (s := ""; args != nil; args = tl args)
15 s += " " + hd args;
16
17 if (s != "")
18 sys ->print (" Hello %s \n", s[1:]);
19
20 if (s == "")
21 sys ->print (" Enter your name .\n");
22 }

We shall commence by briefly glancing at line 13 of this
program which contains the following line.

1 args = tl args;

Lists can be addressed using the tl — tail — and hd
— head — commands, wherein the head returns the first
argument as a string, and tail returns all other arguments
as a list of string. Thus, on this line, we effectively
remove the head from the args variable — and, as I hope
you remember, since the first argument is the name of the
program itself, it is not needed anyhow.

The remaining lines consist of the for loop itself and two
if statements, whereof the latter should be simple enough to
grasp quickly and we shall thus concentrate on lines 14 and
15 primarily: —

1 for (s := ""; args != nil; args = tl args)
2 s += " " + hd args;

68 The Inferno Adventures

The for loop’s initial statement is the declaration of the
s variable as an empty string; thereafter follows the condition
of args not equalling nil; and lastly the command args =
tl args is supposed to be executed, videlicet discarding the
head of the args variable; this is to be done until args no
longer contains any data — id est when its value has become
nil.

The successive line then attaches a space — " " — onto
the s variable, plucks the head from the args variable and,
lastly, adjoins it to the s variable; thereupon the loop is
executed again, yet this time, the args variable has had one
of its arguments expunged. Hallo

Appendix

72 The Inferno Adventures

Addendum

A BRIEF WORD ON COMPILING LIMBO PROGRAMS

Further Reading 73

Further Reading

I applaud you greatly if you have achieved reading this far and
wish to learn even more about this most fascinating operating
system. While there do appear to exist quite a number of
different manuals, documents, documentation, tutorials etc.,
the majority of those seem to have been written quite a while
ago; and whilst the Inferno community is yet to die — as you
hopefully remember from the text itself —, it does not look
as if a large amount of scripture is published on this subject.

Nevertheless, the documents that do exist are of great
quality and a large number thereof have been written by the
creators themselves.

A great book regarding programming with Limbo is
Phillip Stanley-Marbell’s Inferno Programming with
Limbo (ISBN 0 470 84352 7). In addition, the renowned Brian
W. Kernighan has written a paper on the Limbo programming
language titled Descent into Limbo, a copy whereof can be
obtained from Vita Nuova’s website under the following link:
http://www.vitanuova.com/inferno/papers/descent.html. An
archived copy thereof can be found on archive.is under the

74 The Inferno Adventures

following URL: https://archive.is/wip/eQJ05.
Additionally, as briefly mentioned at the beginning of

the book, Vita Nuova print their own Plan 9 and Inferno
manuals, both of which can be ordered on their website.

Another tremendous archive of documents regarding both
Inferno and Plan 9 can be found on this website: http://doc.cat-
v.org/inferno/

